Friday, May 18, 2018

Weekend reads

After some crazily busy weeks a quick weekend read blog post. Some really good papers have appeared in the last couple of weeks. Hard to make a selection.

DNA barcodes are useful for species discovery and species identification, but obtaining barcodes currently requires a well-equipped molecular laboratory, is time-consuming, and/or expensive. We here address these issues by developing a barcoding pipeline for Oxford Nanopore MinION™ and demonstrate that one flowcell can generate barcodes for ~500 specimens despite the high base-call error rates of MinION™ reads. The pipeline overcomes these errors by first summarizing all reads for the same tagged amplicon as a consensus barcode. Consensus barcodes are overall mismatch-free but retain indel errors that are concentrated in homopolymeric regions. They are addressed with an optional error correction pipeline that are corrected based on conserved amino-acid motifs from publicly available barcodes. The effectiveness of this pipeline is documented by analysing reads from three MinION™ runs that represent three different stages of MinION™ development. They generated data for (1) 511 specimens of a mixed Diptera sample, (2) 575 specimens of ants, and (3) 50 specimens of Chironomidae. The run based on the latest chemistry yielded MinION barcodes for 490 of the 511 specimens which were assessed against reference Sanger barcodes (N=471). Overall, the MinION barcodes have an accuracy of 99.3%-100% with the number of ambiguous bases after correction ranging from <0.01-1.5% depending on which correction pipeline is used. We demonstrate that it requires ~2 hours of sequencing to gather all information needed for obtaining reliable barcodes for most specimens (>90%). We estimate that up to 1000 barcodes can be generated in one flowcell and that the cost per barcode can be <USD 2. 

While the high species diversity of tropical arthropod communities has often been linked to marked spatial heterogeneity, their temporal dynamics have received little attention. This study addresses this gap by examining spatio-temporal variation in the arthropod communities of a tropical montane forest in Honduras. By employing DNA barcode analysis and Malaise trap sampling across four years and five sites, 51,596 specimens were assigned to 8,193 presumptive species. High beta diversity was linked more strongly to elevation than geographic distance, decreasing by 12% when only the dominant species were considered. When sampling effort was increased by deploying more traps at a site, beta diversity only decreased by 2%, but extending sampling across years decreased beta diversity by 27%. Species inconsistently detected among years, likely transients from other settings, drove the low similarity in species composition among traps only a few metres apart. The dominant, temporally persistent species substantially influenced the cyclic pattern of change in community composition among years. This pattern likely results from divergence-convergence dynamics, suggesting a stable baseline of temporal turnover in each community. The overall results establish that large sample sizes are necessary to reveal species richness, but are not essential for quantifying beta diversity. This study further highlights the need for standardized methods of sampling and species identification to generate the comparative data required to evaluate biodiversity change in space and time.

BACKGROUND:
Reduced representation genomic datasets are increasingly becoming available from a variety of organisms. These datasets do not target specific genes, and so may contain sequences from parasites and other organisms present in the target tissue sample. In this paper, we demonstrate that (1) RADseq datasets can be used for exploratory analysis of tissue-specific metagenomes, and (2) tissue collections house complete metagenomic communities, which can be investigated and quantified by a variety of techniques.
METHODS:
We present an exploratory method for mining metagenomic "bycatch" sequences from a range of host tissue types. We use a combination of the pyRAD assembly pipeline, NCBI's blastn software, and custom R scripts to isolate metagenomic sequences from RADseq type datasets.
RESULTS:
When we focus on sequences that align with existing references in NCBI's GenBank, we find that between three and five percent of identifiable double-digest restriction site associated DNA (ddRAD) sequences from host tissue samples are from phyla to contain known blood parasites. In addition to tissue samples, we examine ddRAD sequences from metagenomic DNA extracted snake and lizard hind-gut samples. We find that the sequences recovered from these samples match with expected bacterial and eukaryotic gut microbiome phyla.
DISCUSSION:
Our results suggest that (1) museum tissue banks originally collected for host DNA archiving are also preserving valuable parasite and microbiome communities, (2) that publicly available RADseq datasets may include metagenomic sequences that could be explored, and (3) that restriction site approaches are a useful exploratory technique to identify microbiome lineages that could be missed by primer-based approaches.

Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurquí de Moravia, San José Province, Costa Rica (hereafter referred to as Zurquí), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America. Specimens were collected with two Malaise traps running continuously and with a wide array of supplementary collecting methods for three days of each month. All morphospecies from all 73 families recorded were fully curated by technicians before submission to an international team of 59 taxonomic experts for identification.        Overall, a Malaise trap on the forest edge captured 1,988 species or 51% of all collected dipteran taxa (other than of Phoridae, subsampled only from this and one other Malaise trap). A Malaise trap in the forest sampled 906 species. Of other sampling methods, the combination of four other Malaise traps and an intercept trap, aerial/hand collecting, 10 emergence traps, and four CDC light traps added the greatest number of species to our inventory. This complement of sampling methods was an effective combination for retrieving substantial numbers of species of Diptera. Comparison of select sampling methods (considering 3,487 species of non-phorid Diptera) provided further details regarding how many species were sampled by various methods. Comparison of species numbers from each of two permanent Malaise traps from Zurquí with those of single Malaise traps at each of Tapantí and Las Alturas, 40 and 180 km distant from Zurquí respectively, suggested significant species turnover. Comparison of the greater number of species collected in all traps from Zurquí did not markedly change the degree of similarity between the three sites, although the actual number of species shared did increase. Comparisons of the total number of named and unnamed species of Diptera from four hectares at Zurquí is equivalent to 51% of all flies named from Central America, greater than all the named fly fauna of Colombia, equivalent to 14% of named Neotropical species and equal to about 2.7% of all named Diptera worldwide. Clearly the number of species of Diptera in tropical regions has been severely underestimated and the actual number may surpass the number of species of Coleoptera. Various published extrapolations from limited data to estimate total numbers of species of larger taxonomic categories (e.g., Hexapoda, Arthropoda, Eukaryota, etc.) are highly questionable, and certainly will remain uncertain until we have more exhaustive surveys of all and diverse taxa (like Diptera) from multiple tropical sites. Morphological characterization of species in inventories provides identifications placed in the context of taxonomy, phylogeny, form, and ecology. DNA barcoding species is a valuable tool to estimate species numbers but used alone fails to provide a broader context for the species identified.

Given the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole.

The DNA present in the environment is a unique and increasingly exploited source of information for conducting fast and standardized biodiversity assessments for any type of organisms. The datasets resulting from these surveys are however rarely compared to the quantitative predictions of biodiversity models. In this study, we simulate neutral taxa-abundance datasets, and artificially noise them by simulating noise terms typical of DNA-based biodiversity surveys. The resulting noised taxa abundances are used to assess whether the two parameters of Hubbell's neutral theory of biodiversity can still be estimated. We find that parameters can be inferred provided that PCR noise on taxa abundances does not exceed a certain threshold. However, inference is seriously biased by the presence of artifactual taxa. The uneven contribution of organisms to environmental DNA owing to size differences and barcode copy number variability does not impede neutral parameter inference, provided that the number of sequence reads used for inference is smaller than the number of effectively sampled individuals. Hence, estimating neutral parameters from DNA-based taxa abundance patterns is possible but requires some caution. In studies that include empirical noise assessments, our comprehensive simulation benchmark provides objective criteria to evaluate the robustness of neutral parameter inference.

DNA barcodes are widely used for identification and discovery of species. While such use draws on information at the DNA level, the current amassment of ca. 4.7 million COI barcodes also offers a unique resource for exploring functional constraints on DNA evolution. Here, we explore amino acid variation in a crosscut of the entire animal kingdom. Patterns of DNA variation were linked to functional constraints at the level of the amino acid sequence in functionally important parts of the enzyme. Six amino acid sites show variation with possible effects on enzyme function. Overall, patterns of amino acid variation suggest convergent or parallel evolution at the protein level connected to the transition into a parasitic life style. Denser sampling of two diverse insect taxa revealed that the beetles (Coleoptera) show more amino acid variation than the butterflies and moths (Lepidoptera), indicating fundamental difference in patterns of molecular evolution in COI. Several amino acid sites were found to be under notably strong purifying selection in Lepidoptera as compared to Coleoptera. Overall, these findings demonstrate the utility of the global DNA barcode library to extend far beyond identification and taxonomy, and will hopefully be followed by a multitude of work.

Moths are globally relevant as pollinators but nocturnal pollination remains poorly understood. Plant-pollinator interaction networks are traditionally constructed using either flower-visitor observations or pollen-transport detection using microscopy. Recent studies have shown the potential of DNA metabarcoding for detecting and identifying pollen-transport interactions. However, no study has directly compared the realised observations of pollen-transport networks between DNA metabarcoding and conventional light microscopy. Using matched samples of nocturnal moths, we construct pollen-transport networks using two methods: light microscopy and DNA metabarcoding. Focussing on the feeding mouthparts of moths, we develop and provide reproducible methods for merging DNA metabarcoding and ecological network analysis to better understand species-interactions. DNA metabarcoding detected pollen on more individual moths, and detected multiple pollen types on more individuals than microscopy, but the average number of pollen types per individual was unchanged. However, after aggregating individuals of each species, metabarcoding detected more interactions per moth species. Pollen-transport network metrics differed between methods, because of variation in the ability of each to detect multiple pollen types per moth and to separate morphologically-similar or related pollen. We detected unexpected but plausible moth-plant interactions with metabarcoding, revealing new detail about nocturnal pollination systems. The nocturnal pollination networks observed using metabarcoding and microscopy were similar, yet distinct, with implications for network ecologists. Comparisons between networks constructed using metabarcoding and traditional methods should therefore be treated with caution. Nevertheless, the potential applications of metabarcoding for studying plant-pollinator interaction networks are encouraging, especially when investigating understudied pollinators such as moths.

In recent decades, show caves have begun to suffer from microorganism proliferation due to artificial lighting installations for touristic activity. In addition to the aesthetic problem, light encourages microorganisms that are responsible for physical and chemical degradation of limestone walls, speleothems and prehistoric paintings of cultural value. Microorganisms have previously been described by microscopy or culture-dependent methods, but data provided by new generation sequencing are rare. The authors identified, for the first time, microorganisms proliferating in one Swiss and in four French show caves using three different primers. The results showed that both photosynthetic and non-photosynthetic bacteria were the dominant taxa present in biofilms. Microalgae were heavily represented by the Trebouxiophyceae, Eustigmatophyceae and Chlorophyceae groups. Twelve diatoms were also recorded, with dominance of Syntrichia sp. (96.1%). Fungi were predominantly represented by Ascomycota, Zygomycota and Basidiomycota, fully half of the sampled biofilms where Fungi were detected. Comparing microbial communities from bleach-treated caves to those in untreated caves showed no significant difference except for a low-level change in the abundance of certain taxa. These findings provided by Illumina sequencing reveal a complex community structure in the 5 caves based on the assembly of bacteria, cyanobacteria, algae, diatoms, fungi and mosses.

Thursday, May 10, 2018

First circular for iBOL2019


Dear friends and colleagues,

We invite you to visit and bookmark the 8th International Barcode of Life Conference webpage. Please save the dates June 17-20, 2019 in your calendars.

The scientific and social programs are under development, but we are confident that both will be memorable!

Please distribute this invitation broadly in your network and stay tuned for updates.

Tuesday, April 24, 2018

Heineken Prize for Paul Hebert

The Heineken Prizes are the most prestigious international science prizes of the Netherlands. They are awarded every other year. The laureates are selected by juries assembled by the Royal Netherlands Academy of Arts and Sciences and made up of leading Dutch and foreign scientists and scholars. The Heineken Prizes are named after Dr Henry P. Heineken (1886-1971); Dr Alfred H. Heineken (1923-2002) and Charlene de Carvalho-Heineken (1954), chairman of the Dr H.P. Heineken Foundation and the Alfred Heineken Fondsen Foundation, which fund the prizes.

The Academy has awarded the Heineken Prizes this year to biomedical scientist Peter Carmeliet (University of Leuven), cognitive scientist Nancy Kanwisher (MIT), historian John R. McNeill (Georgetown University), biophysicist Xiaowei Zhuang (Harvard University) and - here it comes - biologist Paul Hebert (University of Guelph).




A great and well deserved honour for Paul, the father of DNA barcoding (I know he hates this title but I couldn't resist teasing him).

Friday, April 20, 2018

Weekend reads

Lots of work and distractions keep me from blogging these days. Hope to get back to old routine in the coming weeks. Meanwhile, some more papers to read:

New applications of DNA and RNA sequencing are expanding the field of biodiversity discovery and ecological monitoring, yet questions remain regarding precision and efficiency. Due to primer bias, the ability of metabarcoding to accurately depict biomass of different taxa from bulk communities remains unclear, while PCR-free whole mitochondrial genome (mitogenome) sequencing may provide a more reliable alternative. Here we used a set of documented mock communities comprising 13 species of freshwater macroinvertebrates of estimated individual biomass, to compare the detection efficiency of COI metabarcoding (3 different amplicons) and shotgun mitogenome sequencing. Additionally, we used individual COI barcoding and de novo mitochondrial genome sequencing, to provide reference sequences for OTU assignment and metagenome mapping (mitogenome-skimming) respectively. We found that even though both methods occasionally failed to recover very low abundance species, metabarcoding was less consistent, by failing to recover some species with higher abundances, probably due to primer bias. Shotgun sequencing results provided highly significant correlations between read number and biomass in all but one species. Conversely, the read-biomass relationships obtained from metabarcoding varied across amplicons. Specifically, we found significant relationships for 8 out of 13 (amplicons B1FR-450bp, FF130R-130bp) or 4 out of 13 (amplicon FFFR, 658bp) species. Combining the results of all three COI amplicons (multi-amplicon approach) improved the read-biomass correlations for some of the species. Overall, mitogenomic sequencing yielded more informative predictions of biomass content from bulk macroinvertebrate communities than metabarcoding. However, for large scale ecological studies, metabarcoding currently remains the most commonly used approach for diversity assessment.

BACKGROUND: DNA metabarcoding is used to generate species composition data for entire communities. However, sequencing errors in high-throughput sequencing instruments are fairly common, usually requiring reads to be clustered into operational taxonomic units (OTUs), losing information on intraspecific diversity in the process. While Cytochrome c oxidase subunit I (COI) haplotype information is limited in resolving intraspecific diversity it is nevertheless often useful e.g. in a phylogeographic context, helping to formulate hypotheses on taxon distribution and dispersal.
METHODS: This study combines sequence denoising strategies, normally applied in microbial research, with additional abundance-based filtering to extract haplotype information from freshwater macroinvertebrate metabarcoding datasets. This novel approach was added to the R package "JAMP" and can be applied to COI amplicon datasets. We tested our haplotyping method by sequencing (i) a single-species mock community composed of 31 individuals with 15 different haplotypes spanning three orders of magnitude in biomass and (ii) 18 monitoring samples each amplified with four different primer sets and two PCR replicates.
RESULTS: We detected all 15 haplotypes of the single specimens in the mock community with relaxed filtering and denoising settings. However, up to 480 additional unexpected haplotypes remained in both replicates. Rigorous filtering removes most unexpected haplotypes, but also can discard expected haplotypes mainly from the small specimens. In the monitoring samples, the different primer sets detected 177-200 OTUs, each containing an average of 2.40-3.30 haplotypes per OTU. The derived intraspecific diversity data showed population structures that were consistent between replicates and similar between primer pairs but resolution depended on the primer length. A closer look at abundant taxa in the dataset revealed various population genetic patterns, e.g. the stonefly Taeniopteryx nebulosa and the caddisfly Hydropsyche pellucidula showed a distinct north-south cline with respect to haplotype distribution, while the beetle Oulimnius tuberculatus and the isopod Asellus aquaticus displayed no clear population pattern but differed in genetic diversity.
DISCUSSION: We developed a strategy to infer intraspecific genetic diversity from bulk invertebrate metabarcoding data. It needs to be stressed that at this point this metabarcoding-informed haplotyping is not capable of capturing the full diversity present in such samples, due to variation in specimen size, primer bias and loss of sequence variants with low abundance. Nevertheless, for a high number of species intraspecific diversity was recovered, identifying potentially isolated populations and taxa for further more detailed phylogeographic investigation. While we are currently lacking large-scale metabarcoding datasets to fully take advantage of our new approach, metabarcoding-informed haplotyping holds great promise for biomonitoring efforts that not only seek information about species diversity but also underlying genetic diversity.

While phylogeographic structure has been examined in many North American vertebrate species, insects have received much less attention despite their central ecological roles. The moth genus Malacosoma (Hübner, 1820), is an important group of forestry pests responsible for large-scale defoliation across much of the Nearctic and Palearctic. The present study uses sequence variation in the mitochondrial cytochrome c oxidase 1 (COI) gene to examine the population genetic structure of the three widespread Malacosoma species (M. americana, M. californica, and M. disstria). Populations of all three species showed highest diversity in the south, suggesting that modern populations derived from southern refugia with loss of variation as these lineages dispersed northwards. However, despite similar life histories and dispersal abilities, the extent of regional variation varied among the taxa. M. americana, a species restricted to eastern North America, showed much less genetic structure than the western M. californica or the widespread M. disstria. The regional differentiation in the latter reflects the likely derivation of modern lineages from several refugia, as well as taxonomic uncertainty in M. californica. In these respects, the three species of Malacosoma share phylogeographic patterns similar to those detected in vertebrates which are characterised by greater phylogeographic breaks in the western half of the continent and limited structure in the east.

Sea turtles are distributed in tropical and subtropical seas worldwide. They play several ecological roles and are considered important indicators of the health of marine ecosystems. Studying epibiotic diatoms living on turtle shells suggestively has great potential in the study of turtle behavior because diatoms are always there. However, diatom identification at the species level is time consuming, requires well-trained specialists, and there is a high probability of finding new taxa growing on turtle shells, which makes identification tricky. An alternative approach based on DNA barcoding and high throughput sequencing (HTS), metabarcoding, has been developed in recent years to identify species at the community level by using a DNA reference library. The suitabilities of morphological and molecular approaches were compared. Diatom assemblages were sampled from seven juvenile green turtles (Chelonia mydas) from Mayotte Island, France. The structures of the epibiotic diatom assemblages differed between both approaches. This resulted in different clustering of the turtles based on their diatom communities. Metabarcoding allowed better discrimination between turtles based on their epibiotic diatom assemblages and put into evidence the presence of a cryptic diatom diversity. Microscopy, for its part, provided more ecological information of sea turtles based on historical bibliographical data and the abundances of ecological guilds of the diatom species present in the samples. This study shows the complementary nature of these two methods for studying turtle behavior.

BACKGROUND: Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field.
FINDINGS: We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding.
CONCLUSIONS: Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism.

Assessment of ecological status for the European Water Framework Directive (WFD) is based on "Biological Quality Elements" (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based identification is particularly high for fish, as eDNA is a well-suited sampling approach which can replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. For invertebrates and phytobenthos, the main challenges include the modification of indices and completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms/macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss general implications of implementing DNA-based identification into standard ecological assessment, in particular considering any adaptations to the WFD that may be required to facilitate the transition to molecular data.

Consensus on the optimal high-throughput sequencing (HTS) approach to examine biodiversity in mixed terrestrial arthropod samples has not been reached. Metatranscriptomics could increase the proportion of taxonomically informative mitochondrial reads in HTS outputs but has not been investigated for terrestrial arthropod samples. We compared the efficiency of 16S rRNA metabarcoding, metagenomics and metatranscriptomics for detecting species in a mixed terrestrial arthropod sample (pooled DNA/RNA from 38 taxa). 16S rRNA metabarcoding and nuclear rRNA-depleted metatranscriptomics had the highest detection rate with 97% of input species detected. Based on cytochrome c oxidase I, metagenomics had the highest detection rate with 82% of input species detected, but metatranscriptomics produced a larger proportion of reads matching (Sanger) reference sequences. Metatranscriptomics with nuclear rRNA depletion may offer advantages over metabarcoding through reducing the number of spurious operational taxonomic units while retaining high detection rates, and offers natural enrichment of mitochondrial sequences which may enable increased species detection rates compared with metagenomics.

Freshwater metazoan biodiversity assessment using environmental DNA (eDNA) captured on filters offers new opportunities for water quality management. Filtering of water in the field is a logistical advantage compared to transport of water to the nearest lab, and thus, appropriate filter preservation becomes crucial for maximum DNA recovery. Here, the effect of four different filter preservation strategies, two filter types, and pre-filtration were evaluated by measuring metazoan diversity and community composition, using eDNA collected from a river and a lake ecosystem. The filters were preserved cold on ice, in ethanol, in lysis buffer and dry in silica gel. Our results show that filters preserved either dry or in lysis buffer give the most consistent community composition. In addition, mixed cellulose ester filters yield more consistent community composition than polyethersulfone filters, while the effect of pre-filtration remained ambiguous. Our study facilitates development of guidelines for aquatic community-level eDNA biomonitoring, and we advocate filtering in the field, using mixed cellulose ester filters and preserving the filters either dry or in lysis buffer.

Advances in DNA sequencing technology have revolutionised the field of molecular analysis of trophic interactions and it is now possible to recover counts of food DNA barcode sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of the overall diet of a consumer should we work strictly with datasets summarising the frequency of occurrence of different food taxa, or is it possible to use the relative number of sequences? Both approaches are applied in the dietary metabarcoding literature, but occurrence data is often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. Here, we point out that diet summaries based on occurrence data overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that even with recovery biases incorporated, using relative read abundance (RRA) information can provide a more accurate view of population-level diet in many scenarios. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue to addressing methodological challenges, and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research.

Metabarcoding of lake sediments have been shown to reveal current and past biodiversity, but little is known about the degree to which taxa growing in the vegetation are represented in environmental DNA (eDNA) records. We analysed composition of lake and catchment vegetation and vascular plant eDNA at 11 lakes in northern Norway. Out of 489 records of taxa growing within 2 m from the lake shore, 17-49% (mean 31%) of the identifiable taxa recorded were detected with eDNA. Of the 217 eDNA records of 47 plant taxa in the 11 lakes, 73% and 12% matched taxa recorded in vegetation surveys within 2 m and up to about 50 m away from the lakeshore, respectively, whereas 16% were not recorded in the vegetation surveys of the same lake. The latter include taxa likely overlooked in the vegetation surveys or growing outside the survey area. The percentages detected were 61, 47, 25, and 15 for dominant, common, scattered, and rare taxa, respectively. Similar numbers for aquatic plants were 88, 88, 33 and 62%, respectively. Detection rate and taxonomic resolution varied among plant families and functional groups with good detection of e.g. Ericaceae, Roseaceae, deciduous trees, ferns, club mosses and aquatics. The representation of terrestrial taxa in eDNA depends on both their distance from the sampling site and their abundance and is sufficient for recording vegetation types. For aquatic vegetation, eDNA may be comparable with, or even superior to, in-lake vegetation surveys and may therefore be used as an tool for biomonitoring. For reconstruction of terrestrial vegetation, technical improvements and more intensive sampling is needed to detect a higher proportion of rare taxa although DNA of some taxa may never reach the lake sediments due to taphonomical constrains. Nevertheless, eDNA performs similar to conventional methods of pollen and macrofossil analyses and may therefore be an important tool for reconstruction of past vegetation.

Wednesday, March 28, 2018

Electric fish

Weakly electric fishes produce continuous wave-type electric organ discharges that are used for electrolocation and communication. Electrocommunication convergently evolved within the distantly related South American and African weakly electric fishes approximately 100 million years ago, enabling them to detect their environment and communicate with each other through the generation and sensation of electric signals. Most species use special muscle-derived electric organs to generate the necessary electric current. Members of the ghost knifefishes (family Apteronotidae)  have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons). These eurons fire spontaneously and are the fastest-firing neurons known. Ghost knife fish discharge their electric organs in excess of 1 kHz. 

Today I came across a publication that looked into the evolution of these highly specialized organs. I must say I find this study very fascinating and very well executed. The colleagues show that a skeletal muscle–specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.

A must read ;-)


Friday, March 23, 2018

IPBES assessment reports

Biodiversity and nature's contributions to people sound, to many people, academic and far removed from our daily lives. Nothing could be further from the truth - they are the bedrock of our food, clean water and energy. They are at the heart not only of our survival, but of our cultures, identities and enjoyment of life. 
Sir Robert Watson, Chair of IPBES

Four peer-reviewed assessment reports by the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) focus on providing answers to key questions for different regions, including: why is biodiversity important, where are we making progress, what are the main threats and opportunities for biodiversity and how can we adjust our policies and institutions for a more sustainable future? 

The result of three years of work, the four regional assessments of biodiversity and ecosystem services cover the Americas, Asia and the Pacific, Africa, as well as Europe and Central Asia. In every region, with the exception of a number of positive examples where lessons can be learned, biodiversity and nature's capacity to contribute to people are being degraded, reduced and lost due to a number of common pressures - habitat stress; overexploitation and unsustainable use of natural resources; air, land and water pollution; increasing numbers and impact of invasive alien species and climate change, among others.

IPBES has today released the Summary for Policymakers of each of the four reports. The summaries present the key messages and policy options from each assessment, as approved by the IPBES Plenary. The complete reports (inclusive of all data) will be published later this year. 

As much as I appreciate and welcome such global studies that highlight humanity's negative impact on our planet resulting in a irrecoverable loss of life I am critical of meta-studies. It might sound paradox that I consider such a huge body of work not comprehensive enough but for realistic biodiversity estimates we need to dig deeper. Indirect measures and focus on key species is pragmatic given limited resources and already a lot of work for a lot of colleagues, but it likely shows only the tip of the iceberg. If you don't know how many species are out there let alone what they are doing (or in this context what ecosystem services they might provide) it is hard to quantify the true extent of loss of diversity. We might never know how many species have already disappeared and what cascading effects are already underway or waiting to happen. I am not saying reports like this one are futile, quite the contrary. Humanity needs to know where we are heading but I think some serious considerations of potential underestimates and adaptation of methodology are needed. I am not seeing  any inclusion of DNA-based methods in the reports but without the full reports one can't be 100% sure.

Wednesday, March 21, 2018

From the inbox: Associate Professor / Professor of Biodiversity Genomics

Tenurable appointment - University of Western Australia - School of Biological Sciences

The School of Biological Sciences is a research-intensive school that prides itself in providing innovative, research-informed, teaching at both the undergraduate and postgraduate levels. The School has internationally recognised expertise in Computational Biology, Ecology and Conservation, Evolutionary Biology, Neuroscience and in Science Communication.

The School also hosts the Centre for Evolutionary Biology and the WA Biogeochemistry Centre and has strong links with other Schools in the Faculty of Science, in particular the School of Molecular Sciences and the UWA School of Agriculture and Environment, as well as the UWA Oceans Institute.

Applications are invited for the Associate Professor / Professor of Biodiversity Genomics in the School of Biological Sciences at The University of Western Australia. The position calls for  an outstanding academic in the field of Biodiversity Genomics who has made a significant contribution to high quality teaching and who is internationally recognised. 

For further information regarding the position please contact:

Professor Sarah Dunlop, Head of School, School of Biological Sciences on (08) 6488 2237 or .

This position is open to international applicants.

Our commitment to inclusion and diversity
UWA is committed to a diverse workforce. We celebrate inclusion and diversity and believe gender equity is fundamental to achieving our goal of being a top 50 university by 2050.

We have child friendly areas on campus, including childcare facilities. Flexible work arrangements, part-time hours and job sharing will all be considered.

UWA has been awarded Top Ten Employer for LGBTI – inclusion of the Australian Workplace Equity Index (AWEI -2016).
The University is also a proud member of the Athena SWAN/SAGE Pilot for Gender Equity.
To submit your application, please click on the "Go to application page" button on the university hiring page.

The ad comes with a very nice brochure.